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The use of robotic systems to aid in surgical procedures has greatly increased over

the past decade. Fields such as general surgery, urology, and gynecology have widely

adopted robotic surgery as part of everyday practice. The use of robotic systems in the

field of spine surgery has recently begun to be explored. Surgical procedures involving

the spine often require fixation via pedicle screw placement, which is a task that may be

augmented by the use of robotic technology. There is little margin for error with pedicle

screw placement, because screw malposition may lead to serious complications, such

as neurologic or vascular injury. Robotic systems must provide a degree of accuracy

comparable to that of already-established methods of screw placement, including free-

hand, fluoroscopically assisted, and computed tomography–assisted screw placement.

In the past several years, reports have cataloged early results that show the robotic

systems are associated with equivalent accuracy and decreased radiation exposure

compared with other methods of screw placement. However, the literature is still lacking

with regard to long-term outcomes with these systems. This report provides a technical

overview of robotics in spine surgery based on experience at a single institution using

the ExcelsiusGPS (Globus Medical; Audobon, PA, USA) robotic system for pedicle screw

fixation. The current state of the field with regard to salient issues in robotics and future

directions for robotics in spinal surgery are also discussed.

Keywords: minimally invasive spine surgery, neuronavigation, pedicle screw fixation, robotics, robotic spine

surgery

INTRODUCTION

In the past decade, the role of robotic systems in surgical fields has expanded, and innovations have
flourished (1). Early adopters of this technology have included specialties such as general surgery,
urology, and gynecology, where robotics have augmented the ability to manipulate tissue in body
cavities (2–4). Early incorporation of robotic systems in these fields has spurred innovation and led
to their use in other surgical subspecialties; more recently, robotic systems have been introduced to
the field of spine surgery (5).

Treatment of spinal pathologies often requires fixation via the placement of pedicle screws.
Techniques for pedicle screw placement were first described in the late 1950s, and since that
time, they have undergone a wealth of adaptation and methodological advances. These advances
include the description of open and percutaneous approaches using a variety of navigated
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techniques (6–11). Pedicle screw placement has emerged a
prime area of opportunity for the inclusion of robotics in spine
surgery. Pedicle screw malposition can lead to serious adverse
neurovascular complications, which can contribute to poor
outcomes and require reoperation. Accurate screw placement
is therefore fundamental to reducing possible iatrogenic
complications and improving surgical outcomes.

A key determinant of the widespread adoption of robotics
in spine surgery is efficient and accurate screw placement. The
accuracy of robotic systems must be similar to or better than
that of well-established methods of pedicle screw placement,
including free-hand, fluoroscopically assisted, or computer
tomography (CT)–assisted screw placement. These systems offer
the theoretical advantage of automating inherently repetitive
tasks that are subject to human error. Early reports of the use
of robotic technologies in spine surgery have shown equivalent
accuracy compared with other methods of screw placement (11).
Multiple robotic systems have been approved by the U.S. Food
and Drug Administration for use. The most current technologies
include the ExcelsiusGPS (Globus Medical, Audubon, PA, USA),
Mazor X Stealth Edition (Medtronic, Dublin, Ireland), and
the ROSA ONE Spine (Zimmer Biomet, Warsaw, IN, USA).
These three systems are all now commercially available (12).
Unfortunately, direct comparisons of screw placement accuracy
between these systems are difficult because of the significant cost
and time associated with their adoption.

Herein, we provide a technical overview of the incorporation
of robotics in spine surgery based on our institutional experience
using the ExcelsiusGPS robotic system for pedicle screw fixation.
We also discuss salient issues regarding this technology based
on our experience and consider future directions for robotics in
spinal surgery.

OPERATIVE TECHNIQUE

Exact operative technique and surgical workflow will vary on
the basis of the specific robotic system that is used. This section
will discuss the use of the ExcelsiusGPS system (Globus Medical;
Audobon, PA, USA). Robotic systems may be considered
for any spinal fusion procedure with planned placement of
pedicle screw fixation. At our institution (Barrow Neurological
Institute, Phoenix, AZ, USA), robotics havemost commonly been
incorporated into lumbar fusion procedures, including anterior
lumbar interbody fusion, lateral lumbar interbody fusion (13),
and transforaminal lumbar interbody fusion (14). Percutaneous
pedicle screw fixation has been the most common technique,
although open screw placement has been performed as well.
Additionally, patients may be placed in the prone or lateral
position, depending on the procedure being performed.

Patient positioning and operating room set up are shown in
Figure 1. The patient is prepped and draped in the usual sterile
fashion. First, two small incisions are made over the posterior
superior iliac spine bilaterally. The dynamic reference base array
and the surveillance marker are then affixed to the posterior
superior iliac spine bilaterally. These markers are positioned

Abbreviations: CT, computed tomography.

with a superolateral trajectory. The intraoperative CT registration
fixture is then attached to the dynamic reference base array.
An intraoperative CT scan using O-arm (Medtronic; Dublin,
Ireland) is then performed and is coregistered to the patient’s
preoperative imaging. A trajectory plan may then be created
for each pedicle screw. Alternatively, screw trajectories may be
preplanned before the procedure using a preoperative CT scan
to decrease intraoperative time. Screw plans may be adjusted
and confirmed at this point (Figure 2). The robotic end effector
arm then moves into position to guide all movements along
this planned trajectory. All subsequent steps can be performed
through the end effector arm.

First, a stab skin incision is made. The bovie electrocautery is
used to dissect through the subcutaneous tissue and the fascia.
Importantly, the fascia should be excised medial to the skin
incision to allow for the appropriate trajectory toward the screw
entry point. The bur is then placed on bone at the screw entry
point to create a pilot hole for screw placement. This step is
important to prevent skiving of the drill off of the cortical bone
and facilitate smooth entry into the cancellous channel. Tapping
is then performed under navigation for comparison with the
planned trajectory. Finally, the pedicle screw is placed under
navigation and is also compared with the planned trajectory
(Figure 3A). Once the pedicle screw is in place, the software
notifies the surgeon of correct positioning. For each step, a force
meter confirms that an appropriate amount of force is being
placed on the instruments. The accuracy of screw placement is
usually confirmed with a postplacement intraoperative CT scan
and may be compared with the planned trajectory.

OTHER SURGICAL CONSIDERATIONS

In our experience, screws have been most commonly placed
in a percutaneous fashion. However, open screw placement is
also done in appropriate scenarios, such as when accompanied
by a spinal decompression for degenerative pathologies. In an
open procedure, the dynamic reference base array and the
intraoperative CT registration fixture are placed on a spinous
process above and below the operative segments rather than on
the posterior superior iliac spine. All subsequent steps may be
performed in the fashion described above, with care taken not
to disrupt the dynamic reference base array within the operative
field. In the open exposure, the screw entry site may be directly
visualized, and cortical bone may be drilled away to facilitate
screw placement.

The above-described technique is for patients who are placed
in the traditional prone position. More recently, there has
been increasing interest in performing single-position surgery in
the lateral position for lumbar fusion, including both anterior
lumbar interbody fusion and lateral lumbar interbody fusion,
accompanied by pedicle screw fixation. We have used the
robotic system for screw placement in this position as well
(Figure 3B). In these procedures, the interbody is placed initially
through either an anterior or a lateral incision. Pedicle screw
fixation is then performed. In the lateral position, the down-side
screw trajectory should be modified to decrease medialization
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FIGURE 1 | Illustration of surgical workflow. The patient is placed in either a prone or lateral decubitus position. In both positions, the robotic system is placed

opposite to the scrub table to simplify draping and ease of access. (A) In the prone position, the surgeon stands opposite to the robot. (B) In the lateral position, the

surgeon stands on the same side as the robotic arm. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.

FIGURE 2 | Intraoperative pedicle screw placement using the ExcelsiusGPS robotics system (Globus Medical; Audobon, PA, USA). Screw placement is

demonstrated for a right-sided L4 pedicle screw. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.
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FIGURE 3 | Intraoperative images obtained during robotically assisted pedicle screw placement. (A) Pedicle screw placement in the prone position. The dynamic

reference base array and surveillance marker are attached to the posterior superior iliac spine bilaterally. (B) Pedicle screw placement in the lateral position. Used with

permission from Barrow Neurological Institute, Phoenix, Arizona.

of the screw. This modification helps to maintain sterility
during placement of down-side screws. Sequential steps are
otherwise unchanged.

PEDICLE SCREW PLACEMENT
ACCURACY

Widespread adoption of robotic systems for pedicle screw
placement must entail safe and reliable accuracy. The most
common classification system used in the literature is the
Gertzbein-Robbins classification (15). The reported accuracy of
pedicle screw placement using robotic systems has generally been
high, with rates as high as 94%–98% (16–21). Current literature
is mixed regarding the accuracy of robotically placed pedicle
screws compared with traditional open freehand techniques.
Some studies have reported inferior accuracy with robotically
assisted pedicle screw placement. One randomized controlled
trial found that 93% of pedicle screws placed with the freehand
technique were Gertzbein-Robbins A or B compared with 85%
for those placed with the ROSA SpineAssist robot (22).

However, several studies have since reported non-inferiority
or superiority of robotically assisted pedicle screw placement.
A meta-analysis that included 10 studies found robotically
assisted pedicle screw placement performed better than freehand
screw placement in terms of “perfect accuracy” (odds ratio 95%
confidence interval: 1.38–2.07; P < 0.01) as well as “clinically
acceptable” (odds ratio 95% confidence interval: 1.17–2.08;
P < 0.01) (23). Two other meta-analyses reported similar results,
showing increased accuracy of robotically assisted pedicle screw

placement compared with freehand screw placement (11, 24).
A more recent meta-analysis that included nine randomized
controlled trials with a total of 696 patients also found the
accuracy of pedicle screw placement to be higher with use of
robotic systems than with freehand techniques, although results
varied on the basis of the different robotic systems that were
used (25).

Another technique for pedicle screw fixation that has been
widely adopted includes use of navigation with intraoperative
CT scan. Some surgeons argue that accuracy of screw placement
with use of navigation is high enough that they would not
need the use of a robotic arm. Based on our experience, we
support the use of a robotic arm for multiple reasons. First,
with current technology a CT scan may now be performed pre-
operatively. Screw planning is done prior to surgery and this
can significantly decrease surgical time compared to the use
of intraoperative CT scanning. The ability to plan the screw
trajectory ahead of surgery maximizes the fidelity of screw
placement. Important considerations such as screw size, length,
trajectory, and avoidance of the superior facet are all addressed
prior to skin incision. Second, the use of the robotic armmitigates
the human error that is ever present in repetitive manual tasks.
Lastly, the authors’ experience has been that pedicle screw
placement using the robotic arm is less taxing physically for
the surgeon.

OPERATIVE TIME

Another important factor to consider with regard to the
incorporation of robotics into spine surgery is the additional
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operative time required to use this technology. Multiple studies
have found that increased operative times were associated
with robotic systems. A commonly considered factor that may
contribute to this phenomenon is the steep learning curve for use
of this technology. The learning curve associated with robotics
has been documented previously by multiple authors who have
shown improved accuracy after an initial learning period (26,
27). More persistent exposure to these systems and continued
improvements in technology will likely continue to decrease the
operative time for these procedures.

RADIATION EXPOSURE

A purported advantage of robotic systems is decreased radiation
exposure. The surgeon is not exposed to the initial (preoperative
or intraoperative) CT. Minimal intraoperative radiation is then
required to register the robotic system to this scan using
fluoroscopy. When intraoperative CT is used, no additional
fluoroscopy is required for registration. Decreased radiation
exposure to the surgeon during robotic procedures has been
validated (28). Other studies have shown that decreased overall
and per-screw radiation exposure times are associated with
robotic systems (29, 30). One randomized controlled trial found
that radiation exposure to the surgeon was 10 times lower during
robotic procedures compared with fluoroscopy-guided screw
placement (31).

FUTURE DIRECTIONS

The use of robotic systems in spine surgery is rapidly evolving.
Continued adaptation will be important for future expansion
in this field. These adaptations should include improvements in
efficiency and surgical workflow to facilitate widespread adoption
of these systems. Such improvements would involve enhanced
imaging software to aid with patient registration, to minimize
error, and to assist with trajectory planning both preoperatively
and intraoperatively. The aim of robotic systems is to automate
repetitive tasks that are subject to alteration and human error. As
automation becomes more standardized, this may lead to more

uniform patient outcomes. The indications for use of robotic
systems will likely continue to expand. Currently, most literature
involves fixation of the thoracolumbar spine. Both cervical and
pelvic fixation may incorporate robotic systems in the future. In
addition, applications for robotics may expand to include more
complex spinal procedures, such as decompression, resection
of neoplastic lesions, and complex deformity procedures. With
more widespread use, head-to-head investigations that compare
various robotic systems may help delineate the relative strengths
and weaknesses of each system. Finally, the economic viability
of these systems should continue to be addressed. Their use
will remain limited to resource-rich settings if costs remain
very high.

CONCLUSIONS

Robotic systems have been widely adopted throughout the
United States and in various surgical subspecialties. This
innovative technology continues to permeate the field of spine
surgery. These systems offer the potential advantages of increased
accuracy of screw placement, decreased operative time, and
decreased radiation exposure. However, there is a challenging
learning curve, and various technical factors of these systems
are continuously being reassessed to improve operative efficiency
and to meet these goals. Maintaining clinical equipoise with
established methods of screw placement, including freehand
screw placement and various forms of navigation, will be
important for further adoption of these systems in our field.
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